If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/10x^2=20
We move all terms to the left:
1/10x^2-(20)=0
Domain of the equation: 10x^2!=0We multiply all the terms by the denominator
x^2!=0/10
x^2!=√0
x!=0
x∈R
-20*10x^2+1=0
Wy multiply elements
-200x^2+1=0
a = -200; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-200)·1
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*-200}=\frac{0-20\sqrt{2}}{-400} =-\frac{20\sqrt{2}}{-400} =-\frac{\sqrt{2}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*-200}=\frac{0+20\sqrt{2}}{-400} =\frac{20\sqrt{2}}{-400} =\frac{\sqrt{2}}{-20} $
| 3(x-1)^2-2(x-1)+4=0 | | 9x+7-5x=19 | | -79+11x=26+6x | | 210=50+(20+7)w | | 2x+4=-3-5 | | 2(-2x+1)=3x+4-x | | 9x^2-20x+15=0 | | 3x-2x+6=4x | | 8-5x=24-3x | | 1/3x=5(x-28) | | 5y+32=8 | | 2x+x-15+90=180 | | 4y+2y=5 | | x^2-20=8x-27 | | 2x+2(x+4)=76 | | x(-5-1)=44 | | 4m^2+2m-42=0 | | a+1/5=4/5 | | -1/6w+5=-5/3w-5/2 | | 0=-0.5x^2+10x+150 | | 5.1=9.1-0.5x | | 7x+13=-3-7 | | 10x+3+7x-4+8x+6=180 | | 4(m-20=24 | | (5x+3)(x-7)=0 | | -5y(y-3)=9 | | 9d-4=-18+2d | | 150+0.5x^2=x^2 | | -4=-18+2d | | 4x-(3x+3)=3x-35 | | 10x+20=12x-3 | | 48=5w+3w |